skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chlamtáč, Eden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Megow, Nicole; Smith, Adam (Ed.)
    We provide new approximation algorithms for the Red-Blue Set Cover and Circuit Minimum Monotone Satisfying Assignment (MMSA) problems. Our algorithm for Red-Blue Set Cover achieves Õ(m^{1/3})-approximation improving on the Õ(m^{1/2})-approximation due to Elkin and Peleg (where m is the number of sets). Our approximation algorithm for MMSA_t (for circuits of depth t) gives an Õ(N^{1-δ}) approximation for δ = 1/3 2^{3-⌈t/2⌉}, where N is the number of gates and variables. No non-trivial approximation algorithms for MMSA_t with t ≥ 4 were previously known. We complement these results with lower bounds for these problems: For Red-Blue Set Cover, we provide a nearly approximation preserving reduction from Min k-Union that gives an Ω(m^{1/4 - ε}) hardness under the Dense-vs-Random conjecture, while for MMSA we sketch a proof that an SDP relaxation strengthened by Sherali-Adams has an integrality gap of N^{1-ε} where ε → 0 as the circuit depth t → ∞. 
    more » « less
  2. null (Ed.)